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We describe various numerical methods for the solution of the one-pair light-cone equation 
in the massive Schwinger model. Results obtained by these methods, and by others, are 
compared. Possible extensions to the coupled set of one-pair and two-pair equations are 
discussed. 0 1989 Academic Press, Inc. 

I. INTRODUCTION 

The massive Schwinger model [l] is frequently cited [2] as an example of a 
theory in which the elementary fermions are confined. A linear potential between 
fermions is obtained directly from field theory and is a natural result of having only 
one spatial degree of freedom. This property and the reduced number of dimensions 
make study of the Schwinger model ideal as a first step in any attempt to under- 
stand confining theories. 

A field-theoretic statement of the mass-eigenvalue problem can be converted to 
an infinite set of coupled integral equations [3]. This is done by expanding the 
mass eigenstate in a sum over Fock states. The expansion works best in theories 
quantized on the light cone [4, 51. 

To obtain a manageable set of equations, the Fock-state expansion is truncated. 
For a meson-like state, the most severe truncation leaves only the fermion-anti- 
fermion Fock state. The associated integral equation is the one-pair light-cone 
equation [6, 71 

2 

+LT 
s 

l dx; d 

II ___ - 4% 9 xi) = M2$(x, 7 x2), 
o xl-x; dx; 

(1.1) 

* Present address: Department of Mechanical Engineering, University of Minnesota, Twin Cities, 
Minneapolis, Minnesota 55455. 

229 
0021-9991/89 $3.00 

Copyright 0 1989 by Academic Press, Inc 
All rights 01 reproduction in any form reserved 



230 MA AND HILLER 

Here m is the fermion mass, g the coupling constant, and M the bound-state mass. 
The 9 in the third term indicates that the principal part of the integral should be 
used. The xi are momentum fractions, which are ratios of the light cone plus 
component of the fermion momenta pi to the plus component of the total 
momentum p: 

x.=p+ 
’ P+’ 

pi+ -p;+p;, pf =pO+pf (1.2) 

They vary between zero and one. Momentum conservation requires that they 
satisfy 

x,=1-x,-x. (1.3) 

Each term of (1.1) has a direct interpretation. The first is the kinetic energy 
contribution; it includes a finite mass renormalization. The second term in (1.1) 
comes from pair annihilation. The third is the Fourier transform of the linear 
potential. 

Appropriate boundary conditions follow from requiring a finite expectation value 
for the kinetic energy. They are 

lfqx=O)=~(x= l)=O. (1.4) 

In the next section we consider various numerical methods [7] for the solution 
of (1.1). Following Hanson et al. [8], we will work with a dimensionless form 

where 

&2X$, &4$. (1.6) 
g g 

Each method approximates this integral equation by a finite matrix eigenvalue 
problem. The matrix problem is solved by standard means. 

The results from each method are compared in Section III. Possible extensions to 
the coupled set of one-pair and two-pair equations are also discussed. Results from 
the best method for that purpose are compared with eigenvalues obtained with the 
method of Eller, Pauli, and Brodsky [9]. They carry out discretization at the 
field-theory level, which is very different from the approach taken here. 

II. NUMERICAL METHODS 

There are many methods that can be applied to the eigenvalue problem (1.5). 
One such, the Multhopp method, has already been applied [S] to a sightly 
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different equation that arises in the large-N limit of SU(N) Yang-Mills. In 
Section 1I.A we adapt the analysis to the present case. The second method 
considered is based on Gauss-Chebyshev quadrature for singular integrals [lo]; it 
is discussed in Section 1I.B. Two finite-element methods [ 1 l] are presented in 
Section 1II.C. One uses linear elements and the other, quadratic. A method not 
discussed here is the variational approach of Bergknoff [ 121. 

A. Multhopp 

The basis of the Multhopp approach [S] is an approximate sine-function 
expansion for the wave function, combined with a judicious choice of collocation 
points. A new independent variable is introduced, defined implicitly by 

x=3(1-case). (2.1) 

The wave function is then approximated by 

* z jgl aj sin ie. (2.2) 

Note that the boundary conditions (1.4) are automatically satisfied. On substitution 
of (2.2), Eq. (1.5) becomes 

(2.3) 

The first integral is trivial. The second is most easily done via contour integration 
around the unit circle. The principal part is taken in the usual way. The result is 

Equation (2.3) can then be written as 

~~t,b(tl)+ g aidi,+ i ajw=&+(tl). 
j= I j= 1 

(2.4) 

To have the necessary number of linear equations, N collocation points are 
specified. The most useful ones are the Multhopp angles [S] 

kn 
Ok=- 

N+l’ 
k = 1, . . . . N. 
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Their usefulness follows from the completeness relation 

f sin le, sin lek = y Sjk. 
I= I 

(2.7) 

With this identity, one can eliminate uj from (2.5) in favor of $(e,). To invert (2.2) 
at f3,, simply multiply by sin j0, and sum over k. Use of the completeness relation 
then yields 

Oj=& i *(e,)sin jt3,. 
k-l 

From (2.5) and (2.8), we finally obtain a matrix eigenvalue problem 

(2.8) 

(2.9) 

with 

A,k=----T- i ,p,-; 6mk + & ,; sin jek 
8 j sin je,,, 

+b, . (2.10) 
m J--1 

sin 8, 1 
The matrix problem can be solved by standard means. 

A reduction in computational effort can be achieved if symmetries are taken into 
account. By a redefinition of the eigenvector components 

$cek) = JIsi”ok$tek) 

and multiplication of (2.9) by Jx, we obtain 

,$, A”mk?(ekb~~(em)~ 

where 

(2.11) 

(2.12) 

&,,k = (Jsine,isine,, A,, (2.13) 

is a symmetric matrix. Also, the wave function can be chosen to be an eigenfunction 
I// * of a parity operation [8] 

w--x)=w--I= w(e)= bu-4. (2.14) 

Equation (2.12) can then be converted to an equation with a matrix of dimensions 
reduced by roughly half. 

B. Gauss-Chebyshev 
Many singular integro-differential equations have been solved numerically by 

methods based on quadrature formulas [lo]. Equation (1.5) falls into a class of 
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equations considered, and we can directly apply a method based on Gauss- 
Chebyshev quadrature. These methods have the advantage that the singular 
integral is accurately represented without the necessity of actually doing an integral, 
as was the case for the Multhopp method. Thus they are more generally applicable. 

The Gauss-Chebyshev quadrature formula for a singular integral is [lo] 

(2.15) 

where the A, are weights given by 

kn Ak=Lsin2- 
N+l N+l’ 

TN and UN are Chebyshev polynomials 

T,(t)=cos[Ncos-‘t-j, (2.17) 

uN(t) = 
sin[(N+ 1) cos-‘t] 

Jc-7 ’ 
(2.18) 

(2.16) 

and the t, are the roots of UN: 

(2.19) 

This is a generalization of the ordinary Gauss-Chebyshev quadrature formula 

j-’ ,/-f(t) Lit’=;, Akf(tk). (2.20) 

The weights A, are the same. 
We apply these formulas to the integrals in (1.5). A new integration variable 

t = 2.x - 1 is used, and a new function, consistent with the boundary condi- 
tions (1.4), is defined by 

On use of (2.21), (2.20), and (2.15), Eq. (1.5) becomes, approximately, 

(2.21) 

+*f(t) TN+lo 

uN(t) 1 4Ji?f(t). (2.22) 
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An integration by parts has been used in the second integral to place the derivative 
outside the integral before the quadrature formula was applied. The derivative can 
now be carried out explicitly, except on f: 

The choice of collocation points is again important. The term in (2.22) that 
contains the derivative off can be eliminated by choosing as these points the roots 
of TN+l, which are 

zj=cos($$n), j=l,..., N+l. (2.23) 

If this choice is not used, one is forced to employ a finite-difference approximation 
for the derivative,thus introducing additional error. 

We now have a linear system of N+ 1 equations; however, this is at a cost of 
N+ 1 additional unknowns j”(z,), which brings the total of unknowns to 2N+ 1. 
Rather than increase the number of equations, we redress this imbalance by 
reducing the number of unknowns via Lagrange interpolation: 

N+l 

f(fk)= C Lj(f!f)f(zj) 
i= I 

with 

N+l 
Lj(t)= n 

t-zz, 
m=l zj-zm' 

The matrix eigenvalue problem obtained in this way is 

N+I 

*?I Bjmf(zm) = 8f(zj), 

(2.25) 

(2.26) 

where 

(2.27) 

On use of various identities [ 131, the remaining derivative can be expressed directly 
in terms of polynomials: 

=(N+l)[T,(t)-tT,,,(t)l-T,+,(t)[U,-,(t)/Li,(t)-N11 t228J 
t1 - t2) uN(t) 

. . 
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As for the Multhopp method, the matrix eigenvalue problem (2.26) is solved by 
standard means. 

The need for interpolation can be eliminated, as shown by Ioakimidis and 
Theocaris [lo], by pairing the Gauss-Chebyshev method with one based on 
Lobatto-Chebyshev quadrature. The collocation and quadrature points are inter- 
changed relative to the first method, and together they form the set of points where 
the solution is calculated. 

C. Finite Element 

At the heart of the finite-element method [11] is the subdivision of the domain 
of the unknown function into regions called elements. The unknown function is 
expanded in terms of basis functions defined on these regions. In the present case, 
the elements are segments of the unit interval. We choose N elements of equal 
length h. 

The function 1,9 is to be calculated at N’ points xi called nodes, which are chosen 
at the endpoints of the elements and, perhaps, in the interior. A basis function 4; 
is defined for each node such that 

&(x,) = 6,. (2.29) 

The expansion 

(2.30) 
J=o 

is then exact at the nodes, provided 

ctj = $(x,). (2.31) 

We will always choose nodes in such a way that 

x0=0, XN. - - 1. (2.32) 

The boundary conditions (1.4) then imply that 

lx0 = 0, CtN, - - 0. (2.33) 

On substitution of (2.30) and use of (2.33), Eq. (1.5) becomes 

o x-x, jc, olj#i(i(x’)-a 1 oLJ~J(x)=o’ (2.34) 
j=l 

Rather than choose collocation points, we extract N’ - 1 linear equations from 
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(2.34) by applying the Galerkin method [ll], We require that the scalar product 
of #i with the left-hand side of (2.34) be zero for i between 1 and IV’ - 1. This yields 

where 

p!) = J”’ dx $itx) djtx), 
I/ 

0 X(1-X) 

Zf) = j”; dx q+(x) f; dx’ dj(x’), 

If’ = jol dx 9 IO1 dx’ 4i’:‘_4$x”, 

II;“’ = 
s 
: dx &(x) cjj(x). 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

We thus arrive at a generalized eigenvalue problem 

N'-I N'-I 

1 cijll/(xj) C&f 1 Dij$(xj) 
,= I j=l 

with 

c,=~(R-2)Ii”+4z~)+~z~’ 
7t 7c 

(2.40) 

(2.41) 

and 

D.. = I!?). r/ ‘J (2.42) 

Given explicit expressions for the matrices, the matrix problem can, again, be 
solved by standard methods. 

To make the form of the matrices explicit, we must choose nodes and basis 
functions. The simplest choice is an assignment of nodes only at the endpoints of 
the element, so that xi = ih, combined with basis functions of the form 

1 -lx-xii/h, 
4itx)=(, 

Ix-xi1 <hv 

3 otherwise. 
(2.43) 

The elements are then called linear elements. 
The next simplest choice is known as a quadratic element. Nodes are placed at 
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the endpoints and the midpoint, with xi = i/z/2. The basis function for a midpoint 
node is 

m,~x,={~~~2)(X.,~-x)(x-xi-,), lx-xi) <h/2, 
otherwise, 

(2.44) 
3 

and for an endpoint node, 

(2/h2)(x-xi~,)(x-xi~2), xi>x>xi-h, 

(2/h2)(xj+,-x)(x,+2-x), xj<x<xi+h, (2.45) 
0, otherwise. 

In either case, calculation of the matrices 1F) is straightforward. Because the results 
are somewhat lengthy, but not informative, we do not report them here. 

III. DISCUSSION 

A comparison of results from the different methods is given in Fig. 1. Each 
matrix eigenvalue converges toward the exact answer as the dimension n of the 
matrix is increased, but some converge more rapidly than others. The rate depends 
on the value of R and on the method used. For large R, which corresponds to small 
coupling, convergence is much faster than for small R. This is not surprising since 
for zero coupling the solution is trivial. 

The best individual method, for small and moderate R, is Gauss-Chebyshev. The 
Multhopp method is nearly as good. For large R, all methods do well except when 
the matrix is very small. 

The error in the result from any one method, with IZ = 25, ranges from 10% for 
small R to 1% for large R. Use of extrapolation techniques could considerably 
reduce the error for small R. 

Although the Gauss-Chebyshev and Multhopp methods work well for the one- 
pair equation (1.5) they are not applicable to the coupled set of one-pair and two- 
pair equations [7]. The asymmetric Gauss-Chebyshev matrix does a poor job of 
modeling the Hermitian system. In the case of the Multhopp method, the matrix 
problem cannot even be formulated because some of the integrals analogous 
to (2.4) cannot be done. 

Of the methods discussed here, the one best suited for the two-pair equations is 
the quadratic finite-element method. It is equivalent to the use of linear square 
elements in the 2-dimensional space of x1 and x2. Therefore, an even-handed treat- 
ment of variables is possible. Extension to the four variables present in the two-pair 
case is direct. The elements then become hypercubes. The integrals involved in 
calculating the matrices can all be done, and the matrices are automatically 
symmetric. Work on this approach is in progress. 
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FIG. 1. The difference between the two lowest eigenvalues, lo and tp,, of matrix approximations to 
Eq. (1.5) as a function of the reciprocal of the matrix dimension n. Results are shown for the four 
different methods and three different values of R. 

TABLE I 

Eigenvalues of Eq. (1.5) for the Ground State and First Excited State 

Ground state First excited state 

Quadratic Quadratic 
R Eller et al. finite element Eller et al. linite element 

0.098 2.912 3.291 10.99 12.01 
0.393 4.276 4.520 13.14 13.82 
1.571 8.876 8.928 19.89 20.08 
6.283 23.94 23.94 39.16 39.22 

25.13 77.48 17.24 99.81 99.74 
100.5 276.1 278.1 310.9 312.6 

Note. The results of the quadratic finite-element method are compared with those of Eller, Pauli, and 
Brodsky [9] at various values of R. Both methods approximate (1.5) by a matrix eigenvalue problem, 
either directly or indirectly. The matrix dimension used in 49 for the quadratic finite-element method and 
240 for the method of Ref. [9]. 

238 
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FIG. 2. The spectrum as a function of R. The ten lowest mass states are represented in terms of ratios 
M,/M, to the ground-state mass MO. These were calculated using the quadratic finite-element method, 
with a matrix dimension of 49, and the definition of d in (1.6), which yields M,/M, = ,/?$& 

Table I allows comparison of the quadratic finite-element method with the 
discretized light-cone quantization method of Ref. [9]. The table lists eigenvalues 
of the one-pair equation (1.5). The relatively large differences at small R are to be 
expected because differently sized matrices were used. 

In Fig. 2 we present the spectrum as a function of R. The calculations were done 
with the quadratic finite-element method. The trend in the relative magnitudes of 
the excitation energies is easily explained in terms of the definition of R in (1.6). 
Stronger coupling should produce larger excitations, and that is just what it seen 
as R is reduced. 
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